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A Self-Calibration Concept for Establishing
the Complex Measurement Ability of

Homodyne Network Analyzers

HERYfANN-JOSEF EUL, STUDENT MEMBER, IEEE, AND BURKHARD SCHIEK, MEMBER, IEEE

Absfract —A homodyne phase shifter controlled double reflectometer is

presented. Its ability to make complex measurements of a network depends

on a knowledge of the phase shifter characteristics. This knowledge is

established using fully unknown standards merely by exploiting reciprocity.

If a system error correction is performed, the data needed for error

correction contain enough information to determine the behavior of the

phase shifter and no additional standards are needed. It is shown by

simulation that the measurement of the parameters of the device under test

is only weakly influenced by errors in the phase shifter behavior.

I. INTRODUCTION

N ETWORK analyzers today are in widespread use.

Mostly they are based on the well-known heterodyne

concept; that is, the RF signal is down-converted to an IF

signal to measure the complex information, namely magni-

tude and phase. Another way to make microwave measure-

ments automatically is by the six-port network analyzer

[3], which uses power detectors. A third way has also been

proposed, the homodyne network analyzer [1], which uses

a coherent detection via mixers. In contrast to power

detectors, coherent detection with mixers is a linear detec-

tion, providing a higher dynamic range. Unfortunately the

output signal is proportional not to the complex but to the

real part of the RF information; therefore a further mea-

surement is necessary to obtain information about the

imaginary part, requiring a 90° phase shifter. Phase shifts

q different from 90° are possible, but they must be known

exactly. Although the homodyne concept is very simple

and uses an inexpensive RF part, the lack of phase shifters

with a known phase shift is one reason that homodyne

concepts are not in use for commercially available labora-

tory measurement equipment. Therefore the possibility of

determining the effective phase shift of the imperfect de-

vice in situ has been investigated. With the procedure

described below, the homodyne detector is indeed able to
measure complex information of the RF signal, thereby

establishing a complex measurement capability. Once the

complex measurement capability is established, the setup

can be calibrated in the same way as a heterodyne network
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Fig. 1. The principal block diagram of the setup.

analyzer to remove system errors. However, due to mea-

surement errors, e.g. noise or quantization, the complex

measurement ability cannot be established without error.

These errors lead to small errors in the determination of

the calibration constants and they ultimately influence the

accuracy of the measurement of the device under test

(DUT).

II. THEORY

A. General Description

For the mathematical description in this section a setup

is examined which is capable of making four complex

measurements (see Fig. 1). First we treat four-port 1,

depicted at the left side. It is introduced to provide a

measure of the wave propagating toward the device under

test as well as a measure of the wave emerging from the

DUT; e.g., bd~ is proportional to the incident wave and

ba~ to the reflected wave. Due to such imperfections as a

finite directivity or mismatched ports, both measurements

are disturbed. Thus in our discussion any four-port is
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allowed so long as the readings of bz~ and bq~ are

independent of each other.

Without loss of generality we introduce a fictitious

four-port A which includes the four-port 1 and the mis-

matches and losses of the detectors connected. Therefore

az~ = ad~ = O and

bl~ = S1l~al~ + S1~~a~~ (1)

bz~ = Szl~al~ + Sz3~a~~ (2)

bj~ = Sxl~al~ + &,zfa~* (3)

bd~ = S41~a1~ + S4j~aj~. (4)

These four equations can be reduced in a straightforward

way to the relationship

In a similar manner, four-port 2 is treated, yielding

(5)

(6)

For any two-port, i.e., a DUT or a calibration standard,

connected to the measurement ports

(7)

holds, where the ~, are the elements of the wave transmis-

sion matrix [7]. Using the boundary conditions

bl= aj~ al= b~~ az=bl~ and b,= a,~ (8)

the equation

(9)

is derived. In order to provide a second vector equation of

this type, the three-port (Fig. 1) is turned to its second

position, position II. This might be the second position of

a microwave switch, but any alteration of its signal-split-

ting behavior is sufficient. However, a microwave switch

may be a preferred realization. The readings in the second

state of the three-port are indicated by the prime and fit

(3=ATB-H:) (lo)

These two vector equations (eqs. (9) and (10)) are com-

bined to the matrix equation

which is finally denoted as

‘TB-l=(i:3(2:LP’”-’12)
This description is usually the starting point of network
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Fig. 2. A homodyne detector with an effective binary phase shift to, =
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Fig. 3. The homodyne dcuble rellectometer.

analyzer calibration theory based on complex measuring

hete~odyne detection. Th~ matrices A and B-1 are th~

well-known error matrices considering the imperfections of

the setup.

If it is possible to provide the measurement matrix A4

also with a homodyne setup, one is able to proceed with

any calibration procedure relying on a formalism similar to

(12). This might be, for example, the TSD procedure [2],

the TRL procedure [3], the TMR, or the TAN procedure

[4].

B. Establishing a Complex Measuremefit Ability

In this subsection the complex measurement ability is

established without an additional expense of calibration

standards. This means that either no further standard or

only fully unknown standards are required.

Therefore the behavior of one of the coherent detectors

will be examined further (Fig. 2), e.g. the detection of b~2.

If the phase shifter in the path of the local oscillator is

switched off, the detected voltage will be denoted Uz~ and

if it is turned on, the same quantity will be ~2~. It can

easily be seen that these two voltages can be assembled to
reconstruct the complex wave by,ti by

b2A=~2A(u2A+P~2A) ~f~2Au2A(P) (13)

where a2~ is a complex proportionality factor. At this time

the “weighting factor” p is still unknown. For example, if
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the phase shifter is an ideal one, i.e., a minus 90° -phase

shifter, p equals j and therefore Uz~( p ) = Uz~ + jU2~.

If the phase shifter is in the common path of the mixers

(see Fig. 3), the factor p is the same for all mixers. This

assumption is not strictly valid. But if the phase shifter

only shows a small parasitic amplitude modulation and if

the mixers are fairly equal, the error is of a higher order

small. Nevertheless, more general solutions are also avail-

able in which each detector may have another weighting

factor, denoted by the weighting vector ~ = ( PI, P2, P3, p4).

However, p has to be determined by some kind of calibra-

tion procedure. Therefore (13) and similar equations for

the other complex waves will be substituted into (11),

leading to

( )(‘2,4(P1) ‘i’A(d =~~~.I ‘2 B(P3) ‘2’B(P3)

u4A(p2) uJA(p2) U4B(p.) u;, ( p4) )
(14)

+MA(p)=ATwlA!qJ~)—

+ATB-I= MA(~)MB(~)-l= M(p) (15)

in which the proportionality factors ai are included in the

error matrices A and B – 1.

In order to determine the weighting vector p a number

of completely unknown calibration two-por~s with the

wave transmission matrices N 1 and N2 are connected to

the measurement ports, leading to the measurement matri-

ces which are functions of p:

Ml(p) =/lNIB-l (16)—

M2(p)=AN2B-1,.0S. (17)—

Taking the inverse of Ml(p) and multiplying by iW2(~),

the new matrix is denoted as

=(~2A(P)~2B(?)-1) (~1.(P)~lB(P)-1)-1— — —

(18)

with the determinant

On the other hand it is also true that

det Q(p) =det(iW2i14-1)—

= det(AN2B-l(ANIB-1 )-’) = ~. (20)

If N 1 and N2 are the transmission matqces of reciprocal

but otherwise unknown two-ports, their determinants

equal 1:

det Nl=det N2=l (21)
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Fig. 4. Standard error of the weighting factor p versus noise level P..

Standard error U( Ipl) of the magnitude.
Standard error u(arg( p)) of the argument.

and therefore

det A12~(~)det Ikfl~(~)-detiV12, (p)det A!.fl. (p) ~ O— —

(22)

holds.

The number of necessary characteristic equations similar

to (22), and therefore the number of unknown reciprocal

two-ports, depend on the number of different elements in

the weighting vector p.

In the case describ=d above for which pl = p2 = P3 = p4

= p holds, two unknown standards are needed. Then a

further algebraic treatment leads to a polynomial charac-

teristic equation of the fourth degree:

a4p4 + a3p3 + a2p2 + alp + ao= O (23)

which must be satisfied by the weighting factor p and can

be solved by various methods. Good results have been

obtained using Miiller’s method [5]. As has been discussed

in [6], eq. (23) always has one unique solution. However, a

linear solution is also possible, for example, to provide

starting values for the nonlinear solution. This linear solu-

tion can be applied at the expense of one more unknown

standard [6].

In the most general case of four different weighting

factors, four unknown standards are necessary to provide

the four characteristic equations needed:

~=onz=ok=()[=()

i=l,2,3,4. (24)

These can be solved numerically as well.

III. DISCUSSION

A. Accuracy of the Weighting Factors

If the input data are not exact the performance drops

with -increasing measurement errors. Therefore attention is

given to the way in which the calculated weighting vector

differs from the ideal one if the input data become noisy.

The simulations are performed under practical assump-

tions regarding losses ( = 0.1 ...0.5 dB for each compo-

nent), mismatches ( = – 15 . . . – 20 dB), finite directivities
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Fig. 5. Errors of the parameters of the DUT’S (55 Q and 100 Q transmission lines) versus the error in the weighting vector:

Error of the magnitude, i.e., 2010g(l$,l) – 2010g([$J l).

---- Error of the argument, i.e., arg(~,) – arg($,).

S,l : Exact values:
+ : 1,$111= –20.45 dB, arg(Sll) =0”;

\S21\= -0.04 dB, arg(&) = 90°;

O: ]Sll[= –4.44 dB, arg(Sll) = OO;
IS,II= -1.94 dB, arg(&) = 90°.

,$,: Evaluated values using nonideaf weighting factors.

( = – 15 dB), switching-dependent mismatches ( = – 15

dB), crosstalk ( = – 20”0” – 40 dB), etc. The weighting

factors are assumed to be p,= j = e~900, i =1,2,3,4. The

source provides 3 dBm of microwave power and the noise

level in the measurement channels is assumed to be vari-

able.

In Fig. 4 the standard error of the weighting factor is

plotted as a function of the noise level.

However, the simulations show that the standard error

of the weighting factor magnitude remains for practical
.

noise levels (less than – 80 dBm) better than 0.04 percent,

which is well below any measurement accuracy. As to be

expected from a random phasor model, the corresponding

standard error of the argument is 0.02° = arcsin (0.04 per-

cent/100 percent). This means that measurement errors

due to thermal noise or quantization noise are not influ-
encing the accuracy of the weighting factor noticeably.

B. Accuracy of Measurements

In this subsection the way in which the measurement

performance of the setup drops if the weighting factors are

not exactly evaluated is investigated. The reason for the

reduced measurement performance is that the recon-

structed complex waves will show some errors due to an

imperfect weighting factor. Actually they become a linear

superposition of the original wave and its complex conju-

gate, e.g.,

‘U2A( pl) = bz~ + &~b;~. (25)

In (25) the factor /3z~ becomes zero if the weighting factor

pl has been determined exactly and is equivalent to the

image rejection factor of a single-sideband receiver.

In order to show the impact of these errors on the final

measurements, simulations have been undertaken relying

on the same conditions as mentioned above. The “mea-

sured” data have been corrected from system errors using

the TAN procedure [4]. The DIJT’s were assumed to be

transmission lines with an electrical length of 90° and

characteristic impedances of 550 and 100 Q, respectively.

Fig. 5(a) shows the deviation of the measured value of Sll

from the ideal measurement versus the error in amplitude

of the weighting factors. In Fig. 5(b) the same quantity is

plotted versus the error in the argument of the weighting
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Fig. 6. Standard errors of the parameters of the DUT (55 Q and 100 Q

transmission hnes) versus noise level Pn:

Standard error of the magnitude, i.e., 2010g(lS,,l + O(\$J\)) –

2010?.3(1s/1).
---- Standard error of the argument, i.e., u(arg(~,)).

s,,: Exact values (see Fig. 5).

,$,: Evaluated values using noisy data for system error calibration

and DUT measurement. System error removal has been per-
formed by using the TAN procedure.

factors. Fig. 5(c) and Fig. 5(d) show similar results for the

transmission coefficient Szl.

The deviations from the correct values given by Fig. 5

are caused only by imperfect weighting factors. They should

be compared to those which arise from noisy measurement

data and which occur in homodyne as well as heterodyne
systems. In Fig. 6 the way in which Sll and Szl are

degraded is plotted versus noise level in the detection

channels for a perfect complex measurement ability. No-

tice that this is not the signal-to-noise ratio but the total

power of noise in each detection channel and 3 dBm total

power fed into the switchable three-port (Figs. 1 and 3).

Although in practice the noise level maybe well below the

values used in Fig. 6, they make it possible to compare the

direct impact of the noise level on the measurement with

the indirect influence via the weighting factors.

However, the loci show that normal measurement errors

due to noise are of the same order as the errors caused by

imperfectly evaluated weighting factors due to noisy data.

This means that errors in the weighting vector proved to be

noncritical as they do not lead to enhanced errors in the

final results.

In order to obtain the predicted behavior in a practical

setup, one has to pay attention to certain details. For

example there must be no crosstalk between the measure-

ment channels via the LO network. This is normally en-

sured by the RF-to-LO isolation of the mixers and the

decoupling of the power divider in the LO feeding net-

work. If this is not sufficient, isolators must be inserted

into the LO feeding paths. However, crosstalk between the

measurement channels for almost any arbitrary path in the

test section of the RF part of the setup is allowed and

completely covered by the theory. However, the model

does not cover leakage between the two reflectometers. In

a similar practical homodyne setup where the above-men-

tioned provisions among others have been applied, a dy-

namic range for the transmission coefficient of better than

100 dB has been achieved [8], [9].

IV. CONCLUSION

Via the measurement of two arbitraiy and unknown but

reciprocal networks, it is possible to determine the complex

weighting factor p, i.e., to establish the ability of measur-

ing complex information in a homodyne network analyzer.

As one example this can be done by using a sliding line of

arbitrary characteristic impedance and unknown length

and arbitrary reflections.

In order to reduce the effort of connecting calibration

standards, it is possible to use the data needed anyway to

calibrate the setup for system error removal. Calibration

procedures such as TSD [2], TRL [3], TAN, and TMR [4]

provide well-conditioned characteristic equations. There-

fore it is possible to establish the ability of complex

measurements without any additional expense and to pro-

ceed as in a normal network analyzer calibration.
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