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A Self-Calibration Concept for Establishing
the Complex Measurement Ability of
Homodyne Network Analyzers
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Abstract — A homodyne phase shifter controlled double reflectometer is
presented. Its ability to make complex measurements of a network depends
on a knowledge of the phase shifter characteristics. This knowledge is
established using fully unknown standards merely by exploiting reciprocity.
If a system error correction is performed, the data needed for error
correction contain enough information to determine the behavior of the
phase shifter and no additional standards are needed. It is shown by
simulation that the measurement of the parameters of the device under test
is only weakly influenced by errors in the phase shifter behavior.

I. INTRODUCTION

ETWORK analyzers today are in widespread use.

Mostly they are based on the well-known heterodyne
concept; that is, the RF signal is down-converted to an IF
signal to measure the complex information, namely magni-
tude and phase. Another way to make microwave measure-
ments automatically is by the six-port network analyzer
[3], which uses power detectors. A third way has also been
proposed, the homodyne network analyzer [1], which uses
a coherent detection via mixers. In contrast to power
detectors, coherent detection with mixers is a linear detec-
tion, providing a higher dynamic range. Unfortunately the
output signal is proportional not to the complex but to the
real part of the RF information; therefore a further mea-
surement is necessary to obtain information about the
imaginary part, requiring a 90° phase shifter. Phase shifts
@ different from 90° are possible, but they must be known
exactly. Although the homodyne concept is very simple
and uses an inexpensive RF part, the lack of phase shifters
with a known phase shift is one reason that homodyne
concepts are not in use for commercially available labora-
tory measurement equipment. Therefore the possibility of
determining the effective phase shift of the imperfect de-
vice in situ has been investigated. With the procedure
described below, the homodyne detector is indeed able to
measure complex information of the RF signal, thereby
establishing a complex measurement capability. Once the
complex measurement capability is established, the setup
can be calibrated in the same way as a heterodyne network
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Fig. 1. The principal block diagram of the setup.

analyzer to remove system errors. However, due to mea-
surement errors, €.g. noise or quantization, the complex
measurement ability cannot be established without error.
These errors lead to small errors in the determination of
the calibration constants and they ultimately influence the
accuracy of the measurement of the device under test
(DUT).

II. THEORY
A. General Description

For the mathematical description in this section a setup
is examined which is capable of making four complex
measurements (see Fig. 1). First we treat four-port 1,
depicted at the left side. It is introduced to provide a
measure of the wave propagating toward the device under
test as well as a measure of the wave emerging from the
DUT; e.g., by, is proportional to the incident wave and
b, 4 to the reflected wave. Due to such imperfections as a
finite directivity or mismatched ports, both measurements
are disturbed. Thus in our discussion any four-port is
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allowed so long as the readings of b,, and b,, are
independent of each other.

Without loss of generality we introduce a fictitious
four-port A4 which includes the four-port 1 and the mis-
matches and losses of the detectors connected. Therefore
a,,=a,,=0and

1
@
3
(4)

These four equations can be reduced in a straightforward

way to the relationship
by 4 _ Ay Ap ( Q34 )
by Ay Ay by |0

In a similar manner, four-port 2 is treated, yielding

byp _ By, By, (bw) 6)
byp By By )\%p)
For any two-port, i.e., a DUT or a calibration standard,
connected to the measurement ports

-2 =) 0

holds, where the T,, are the elements of the wave transmis-
sion matrix [7]. Using the boundary conditions

bia= 81140141 S134934
byy=S514a147F Sy34a34
b3y = 8314014 S334034

byy=S414014+ Su34934-

(5)

by=as,  ay=by; ay=byy and by=ay (8)
the equation
-1
bia| _[An Au|(Tu Tyn)[Bu Bu) (sz
by An Ap\Tn Tnf\Bn By byp

=ATB—1(IZZ) (9)

is derived. In order to provide a second vector equation of
this type, the three-port (Fig. 1) is turned to its second
position, position II. This might be the second position of
a microwave switch, but any alteration of its signal-split-
ting behavior is sufficient. However, a microwave switch
may be a preferred realization. The readings in the second
state of the three-port are indicated by the prime and fit

bi 4 béa)
=ATB! . 10
e} oo
These two vector equations (egs. (9) and (10)) are com-
bined to the matrix equation

b2A bélA ) — ATBkl(sz bélB) (11)
by big by bip
which is finally denoted as
byy big\[brg big\ lact
ATR 1= 4 2B 2,3 Sty (12
( bys big)\bsp bip (12)

This description is usually the starting point of network
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Fig. 3. The homodyne double reflectometer.

analyzer calibration theory based on complex measuring
heterodyne detection. The matrices 4 and B! are the
well-known error matrices considering the imperfections of
the setup.

If it is possible to provide the measurement matrix M
also with a homodyne setup, one is able to proceed with
any calibration procedure relying on a formalism similar to
(12). This might be, for example, the TSD procedure [2],
the TRL procedure [3], the TMR, or the TAN procedure

[4].
B. Establishing a Complex Measurement Ability

In this subsection the complex measurement ability is
established without an additional expense of calibration
standards. This means that either no further standard or
only fully unknown standards are required.

Therefore the behavior of one of the coherent detectors
will be examined further (Fig. 2), e.g. the detection of b,,.
If the phase shifter in the path of the local oscillator is
switched off, the detected voltage will be denoted U, ; and
if it is turned on, the same quantity will be U, ,. It can
easily be seen that these two voltages can be assembled to
reconstruct the complex wave b; 4 by

~ def
b2A=a2A(U2A+PU2A)7=UzAUzA(P) (13)

where a, , 1s a complex proportionality factor. At this time
the “weighting factor” p is still unknown. For example, if
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the phase shifter is an ideal one, i.e., a minus 90° phase
shifter, p equals j and therefore U, ,(p)=U,, + U, ,

If the phase shifter is in the common path of the mixers
(see Fig. 3), the factor p is the same for all mixers. This
assumption is not strictly valid. But if the phase shifter
only shows a small parasitic amplitude modulation and if
the mixers are fairly equal, the error is of a higher order
small. Nevertheless, more general solutions are also avail-
able in which each detector may have another weighting
factor, denoted by the weighting vector p = ( py, P2, P3> Ps)-
However, p has to be determined by some kind of calibra-
tion procedure. Therefore (13) and similar equations for
the other complex waves will be substituted into (11),
leading to

U, 4(p1)
Ups( p2)

U/p( p3)
U/(ps)
(14)

UZB(p3)
Uysp( pa)

Uz’A(lH)

=ATB~!
U4/A(P2)

"MA(_P) =ATB_1MB(£)

M,(p)Ms(p) '=M(p)  (15)

in which the proportionality factors «; are included in the
error matrices 4 and B~ 1.

In order to determine the weighting vector p a number
of completely unknown calibration two-ports with the
wave transmission matrices N1 and N2 are connected to
the measurement ports, leading to the measurement matri-
ces which are functions of p:

— ATB '=

M1(p)=AN1B™ (16)
(17)

Taking the inverse of M1( p) and multiplying by M2( p).
the new matrix is denoted as

Q(p)=M2(p)M1(p)~"

M2(p) = AN2B7},- -

= (M2,(p)M2,(p) ) (M1, (p)M1,(p) )
(18)

with the determinant

det M2 ,(p)det M1,( p)
detQ(p) = = == (19)
det M2,( p)det M1,(p)
On the other hand it is also true that
detQ(p)=det(M2M17')
= det(AN2B Y(AN1B 1)) = det V2 (20)
- det N1’

If N1 and N2 are the transmission matrices of reciprocal
but otherwise unknown two-ports, their determinants
equal 1:

det N1=detN2=1

(21)
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Fig. 4. Standard error of the weighting factor p versus noise level P,.
Standard error o(| p|) of the magnitude.
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and therefore

det M2,,( p)det M1,( p)—det M2,( p)det M1,(p) =0
(22)

holds.

The number of necessary characteristic equations similar
to (22), and therefore the number of unknown reciprocal
two-ports, depend on the number of different elements in
the weighting vector p.

In the case described above for which p;= p,=p;=p,
= p holds, two unknown standards are needed Then a
further algebraic treatment leads to a polynomial charac-
teristic equation of the fourth degree:

(23)
which must be satisfied by the weighting factor p and can
be solved by various methods. Good results have been
obtained using Miiller’s method [5]. As has been discussed
in [6], eq. (23) always has one unique solution. However, a
linear solution is also possible, for example, to provide
starting values for the nonlinear solution. This linear solu-
tion can be applied at the expense of one more unknown
standard [6].

In the most general case of four different weighting
factors, four unknown standards are necessary to provide
the four characteristic equations needed:

a,pt+aspP+a,pPtaptay=0

Z Z Z Zaz 1+2k+4m+8nP4P3P2P1 0,
n=0m=0k=0/=0

i=1,2,3,4.

These can be solved numerically as well.

(24)

ITII. DISCUSSION
A. Accuracy of the Weighting Factors

If the input data are not exact the performance drops
with increasing measurement errors. Therefore attention is
given to the way in which the calculated weighting vector
differs from the ideal one if the input data become noisy.
The simulations are performed under practical assump-
tions regarding losses (= 0.1---0.5 dB for each compo-
nent), mismatches (= —15 - - - —20 dB), finite directivities
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Fig. 5. Errors of the parameters of the DUT’s (55 Q@ and 100 Q transmission lines) versus the error in the weighting vector:

Error of the magnitude, i.e., 2010g(|5": ,D—20log(|S,, )

~——— Error of the argument, i.e., arg(S";j)—arg(S,j).
S, Exact values:
+: |S)1]= —20.45 dB, arg(S;,) =0°;
|S|= —0.04 dB, arg(S,;) = 90°;
O: |Sy|=—4.44 dB, arg(S$;;) =0°;
|Sy|=—1.94 dB, arg(S,;) = 90°.

]

(= —15 dB), switching-dependent mismatches (= —15
dB), crosstalk (=—20--- —40 dB), etc. The weighting
factors are assumed to be p,= j=e/%", i=1,2,3,4. The
source provides 3 dBm of microwave power and the noise
level in the measurement channels is assumed to be vari-
able.

In Fig. 4 the standard error of the weighting factor is
plotted as a function of the noise level.

However, the simulations show that the standard error
of the weighting factor magnitude remains for practical
noise levels (less than — 80 dBm) better than 0.04 percent,
which is well below any measurement accuracy. As to be
expected from a random phasor model, the corresponding
standard error of the argument is 0.02° = arcsin (0.04 per-
cent/100 percent). This means that measurement errors
due to thermal noise or quantization noise are not influ-
encing the accuracy of the weighting factor noticeably.

B. Accuracy of Measurements

In this subsection the way in which the measurement
performance of the setup drops if the weighting factors are
not exactly evaluated is investigated. The reason for the

S : Evaluated values using nonideal weighting factors.

reduced measurement performance is that the recon-
structed complex waves will show some errors due to an
imperfect weighting factor. Actually they become a linear
superposition of the original wave and its complex conju-
gate, e.g.,

Ur4(P1) = by + Baub3y- (25)
In (25) the factor B, , becomes zero if the weighting factor
p, has been determined exactly and is equivalent to the
image rejection factor of a single-sideband receiver.

In order to show the impact of these errors on the final
measurements, simulations have been undertaken relying
on the same conditions as mentioned above. The “mea-
sured” data have been corrected from system errors using
the TAN procedure [4]. The DUT’s were assumed to be
transmission lines with an electrical length of 90° and
characteristic impedances of 55 § and 100 £, respectively.
Fig. 5(a) shows the deviation of the measured value of S;; -
from the ideal measurement versus the error in amplitude
of the weighting factors. In Fig. 5(b) the same quantity is
plotted versus the error in the argument of the weighting



288

T

v

° (@)}

& 0500 20° ¢
el 1 —~
—.‘: ! ° Ui_
w0375+ 18"
"6 o]
N 5
= S
) &
S T
o (]
g .
n 0 g
wn

200 -90 -80 70 -60
Noise level dBm)
(@)

%

1
° [@]
@ 00500 020° &
Iz =
o 003751 fots® &
5 3
S 00250+ -0,10° ©
5 5
o @
g 001257 r005° ©
5 g
n 0 ; . . 0° E
-100 -9 -8  -70  -60 &

Noise level dBm)
(b)

Fig. 6. Standard errors of the parameters of the DUT (55 § and 100 ©
transmission lines) versus noise level P,:

Standard error of the magnitude, ie., 20log(|S, |+ a(}S -

2010g(|S,,|). .
———— Standard error of the argument, ie., o(arg(S$,,)).
S, Exact values (see Fig. 5).
ST, I Evaluated values using noisy data for system error calibration

and DUT measurement. System error removal has been per-
formed by using the TAN procedure.

factors. Fig. 5(c) and Fig. 5(d) show similar results for the
transmission coefficient S,;.

The deviations from the correct values given by Fig, 5
are caused only by imperfect weighting factors. They should
be compared to those which arise from noisy measurement
data and which occur in homodyne as well as heterodyne
systems. In Fig. 6 the way in which S;; and S, are
degraded is plotted versus noise level in the detection
channels for a perfect complex measurement ability. No-
tice that this is not the signal-to-noise ratio but the total
power of noise in each detection channel and 3 dBm total
power fed into the switchable three-port (Figs. 1 and 3).
Although in practice the noise level may be well below the
values used in Fig. 6, they make it possible to compare the
direct impact of the noise level on the measurement with
the indirect influence via the weighting factors.

However, the loci show that normal measurement errors
due to noise are of the same order as the errors caused by
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imperfectly evaluated weighting factors due to noisy data.
This means that errors in the weighting vector proved to be
noncritical as they do not lead to enhanced errors in the
final results.

In order to obtain the predicted behavior in a practical
setup, one has to pay attention to certain details. For
example there must be no crosstalk between the measure-
ment channels via the LO network. This is normally en-
sured by the RF-to-LO isolation of the mixers and the
decoupling of the power divider in the LO feeding net-
work. If this is not sufficient, isolators must be inserted
into the LO feeding paths. However, crosstalk between the
measurement channels for almost any arbitrary path in the
test section of the RF part of the setup is allowed and
completely covered by the theory. However, the model
does not cover leakage between the two reflectometers. In
a similar practical homodyne setup where the above-men-
tioned provisions among others have been applied, a dy-
namic range for the transmission coefficient of better than
100 dB has been achieved [8], [9].

IV. CONCLUSION

Via the measurement of two arbitrary and unknown but
reciprocal networks, it is possible to determine the complex
weighting factor p, i.e., to establish the ability of measur-
ing complex information in a homodyne network analyzer.
As one example this can be done by using a sliding line of
arbitrary characteristic impedance and unknown length
and arbitrary reflections.

In order to reduce the effort of connecting calibration
standards, it is possible to use the data needed anyway to
calibrate the setup for system error removal. Calibration
procedures such as TSD [2], TRL [3], TAN, and TMR [4]
provide well-conditioned characteristic equations. There-
fore it is possible to establish the ability of complex
measurements without any additional expense and to pro-
ceed as in a normal network analyzer calibration.
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